May 11, 2023

Advanced Mechanical Elements (Lecture 5)

Kinetostatic analysis and motion control of overactuator mechanisms - Motion control of overactuator mechanisms using relaxation with elastic elements-

Tokyo Institute of Technology Dept. of Mechanical Engineering School of Engineering **Prof. Nobuyuki Iwatsuki**

1. Motion Control of overactuator mechanisms with redundancy

1.1 Overactuator mechanisms with redundancy

There is a possibility to obtain overactuator mechanisms when we design hyper redundant multi-loop mechanisms.

Degrees-of-Freedom of mechanism:

$$F = 3(5-1) - 5(3-1) = 2$$

Number of Actuators:

A simple example of overactuator mechanism

1. Motion Control of overactuator mechanisms with redundancy

- 1.1 Overactuator mechanisms with redundancy
- There is a possibility to obtain overactuator mechanisms when we design hyper redundant multi-loop mechanisms.
- (1)Cooperation of small actuators to generate high power
- (2) The robot can move while some actuators are broken down.

How to design and control the overactuator mechanisms especially taking account of interfere between actuators

1.2 Proposal of network-structure robot

Planar network structure robot: Large scale robot which is composed of linearactuator units connecting with each other

> Linearactuator units: two revolute pairs _ mounted at both ends of a linearactuator

Possibility to control outline of the mechanism by specifying multiple output points

Planar network-structure robot composed of modules

Proposal: Network-structure module as a minimum unit of network structure robot

Definition of network structure module

- (1)A planar link chain composed of linear actuators and links with multiplerevolute joints
- (2)Connected with a frame or other modules with connective joints

(3)A mechanism obtained by connecting all connective joints of the module with frame has more actuators than DOF.

(4)Not include other modules in itself

1.3 Synthesis of large scale network structure robot by connecting modules

Connection of network structure modules

Synthesized network structure robot with 12 DOF 13 actuators

1.4 Forward kinematics of network-structure robot

Forward kinematics of network-structure modules (a)Module A

Module A

(b)Module B

Overactuator module

to another actuator input

Module **B**

(c)Module C

Module C

New variable ψ :

$$\begin{bmatrix} x_{J1} \\ y_{J1} \end{bmatrix} = \begin{bmatrix} \theta_1 \cos \psi + x_1 \\ \theta_1 \sin \psi + y_1 \end{bmatrix}$$

Forward kinematics of module A: $\begin{bmatrix} J_1J_2A_2J_5, & J_5J_4A_4J_3 \end{bmatrix}$

 $\check{Calculation}$ of position of J_3

Solve the nonlinear equation and obtain ψ

$$f(\psi) = [x_{J3}(\psi) - x_3]^2 + [y_{J3}(\psi) - y_3]^2 - \theta_3^2 = 0$$

Calculate all joint positions using ψ

Forward kinematics of robot	Table 1 Dime				
	Table 1 Dimensions of a planar network-structure				
Output point	robot with	112 degrees-01-freed	$\frac{10m}{7}$	nit: mm)	
J_{22} θ_{13} $I_{}$	(x_1,y_1)	(-75.00, 0.00)		266.81	
	(x_2, y_2)	(-450.00, 75.00)	l_2	266.81	
θ_{11}	(x_3, y_3)	(-830.00, 115.00)	l_3	234.01	
$l_{2}^{l_{10}}$ J_{33} l_{10} l_{12}^{12}	(x_4, y_4)	(75.00, 0.00)	l_4	234.01	
$J_{n} \propto n^{\frac{5}{8}} \sqrt{1} \qquad \sqrt{19} \sqrt{59} \qquad 1$	(x_5, y_5)	(450.00, 75.00)	l_5	175.92	
29 1^{8} 25 1^{27} 1^{7} 3^{31}	(x_6, y_6)	(830.00, 115.00)	l_6	175.92	
$r = \frac{324}{10} \eta_{51} = \frac{323}{10} \eta_{51}$			l_7	248.20	
			l_8	248.20	
$\mathcal{P}_{l_7} \leq \mathcal{O}_{l_7} < O$			l_9	233.08	
θ_{0} /// / η_{5}			l_{10}	233.08	
$J_{10}^{15} = J_{10}^{15} = $	(ξ ₉ ,η ₉)	(246.29, 164.19)	J ₂ -	ξ_{1}, η_{1}	
$M = \frac{5}{10} + \frac{5}{20} + \frac{5}{10} + \frac{5}{$	(ξ_{10}, η_{10})	(246.29, 164.19)	J ₅ - 4	ξ ₂ ,η ₂	
	(ξ_{11}, η_{11})	(389.95, 82.10)	$J_2^{-}\xi_1, \eta_1$		
J_{10}	(ξ_{12}, η_{12})	(389.95, -82.10)	J ₅	ξ_{2}, η_{2}	
η_{1}^{3}	(ξ_{15}, η_{15})	(140.41, -187.21)	J ₉ - 6	ξ ₃ ,η ₃	
J_{9} J_{9} J_{14}	(ξ_{16}, η_{16})	(421.22, -93.30)	J ₉ - 6	ξ ₃ ,η ₃	
$\theta_3 / l_3 \varepsilon_3 \int_{11}^{12} \delta_1 \varepsilon_1 \delta_4 = 0$	(ξ_{17},η_{17})	(140.41, 187.21)	J ₁₀ -	ξ4,η4	
	(ξ_{18},η_{18})	(421.12, 93.60)	$J_{10} - \xi_4, \eta_4$		
$n^{1/3} V^{3/7} V^{3/8} V^{3/10}$	(ξ_{23}, η_{23})	(171.67, 236.81)	$J_{20} - \xi_{5,1}, \eta_{5,1}$		
		(4.25, 236.81)	J ₂₁ - \$	$5,2, \eta_{5,2}$	
$J_{\epsilon} = \frac{1}{2} \frac{1}$	(ξ_{24},η_{24})	(-136.70, 29.17)	J ₂₀ - \$	$[5,1,\eta_{5,1}]$	
1	(ξ_{25}, η_{25})	(-93.93, 209.49)	J ₂₀ -ξ	$\xi_{5,1}, \eta_{5,1}$	
$J_3 \qquad J_2 $	(ξ_{26},η_{26})	(312.63, 29.17)	J ₂₁ - \$	$\xi_{5,2}, \eta_{5,2}$	
$J_1 \stackrel{\smile}{\sim} J_2$	(<i>ξ</i> ₂₇ , η ₂₇)	(269.85, 209.49)	J ₂₁ - ξ	$5_{,2}, \eta_{5,2}$	
			J ₂₄	ξ ₆ ,η ₆	
Can be calculated with sequential calculation			J ₂₅ -	J ₂₅ -ξ ₇ ,η ₇	
			J ₂₆ -	ξ ₈ ,η ₈	
of forward kinematics of modules			J ₂₇ -	ξ ₉ ,η ₉	

The planar network-structure robot with 12 DOF and 15 actuators

One example of forward kinematics of robot

1.5 Inverse kinematics using representative points on module

Inverse kinematics of module

Desired displacement of module to generate desired position of output point

Describe the displacement of module with motion of one or a few *representative points* on the module

For Less DOF : The nearest motion for the desired displacement

For more DOF : Increase representative points

(1) Module A and B

Solution as the nearest displacement:

$$\theta = \sqrt{(x_J^* - x_1)^2 - (y_J^* - y_1)^2}$$

where

$$\begin{bmatrix} x_{J}^{*} \\ y_{J}^{*} \end{bmatrix} = \frac{l}{\sqrt{(x_{J} - x_{2} + \Delta x_{J})^{2} + (y_{J} - y_{2} + \Delta y_{J})^{2}}} \begin{bmatrix} x_{J} - x_{2} + \Delta x_{J} \\ y_{J} - y_{2} + \Delta y_{J} \end{bmatrix} + \begin{bmatrix} x_{2} \\ y_{2} \end{bmatrix}$$

(2)Module C "4 DOF \rightarrow 2 Representative points" $\theta_{k} = \sqrt{(x_{1k}^{*} - x_{k})^{2} + (y_{1k}^{*} - y_{k})^{2}}$ $l_{15} (x_{J5}, y_{J5}) \phi_{2} l_{45} J_{4} (x_{J5}, y_{J4})$ $(k=1 \sim 4)$ $J_1(x_{J1},y_{J1})$ where $\begin{vmatrix} x_{J5} \\ y_{J5} \end{vmatrix} = \begin{vmatrix} l_{25} \cos \gamma + x_{J2}^* \\ l_{25} \sin \gamma + v_{J2}^* \end{vmatrix}$ θ $\begin{array}{c} \theta_{4} \\ A_{4}(x_{4},y_{4}) \end{array} \gamma = \tan^{-1} \frac{y_{J3}^{*} - y_{J2}^{*}}{x_{J3}^{*} - x_{J2}^{*}} \pm \cos^{-1} \frac{l_{25}^{2} + l_{23}^{2} - l_{35}^{2}}{2l_{25}l_{23}} \end{array}$ (x_{J2}, y_{J2}) $//(x_{J2}^{*},y_{J2}^{*}))$ $\begin{array}{c} \begin{array}{c} & & \\$ $A_1(x_1, y_1)$ $\begin{bmatrix} x_{J1} \\ y_{J1} \end{bmatrix} = \begin{vmatrix} l_1 \cos \phi_1 \cos \phi_{25} - l_1 \sin \phi_1 \sin \phi_{25} + x_{J2}^* \\ l_1 \cos \phi_1 \sin \phi_{25} + l_1 \sin \phi_1 \cos \phi_{25} + y_{J2}^* \end{vmatrix}$ $A_3(x_3, y_3)$ $\begin{bmatrix} x_{J4} \\ y_{J4} \end{bmatrix} = \begin{bmatrix} l_{45} \cos \phi_2 \cos \phi_{53} - l_{45} \sin \phi_2 \sin \phi_{53} + x_{J5} \\ l_{45} \cos \phi_2 \sin \phi_{53} + l_{45} \sin \phi_2 \cos \phi_{53} + y_{J5} \end{bmatrix}$

1.6 Inverse kinematics of robot using representative points on modules

Inverse kinematics of Robot

Inverse kinematics calculation of modules for given desired displacement of representative points on modules *It is difficult to obtain precise desired output motion* of robot.

Forward kinematics calculation of robot to obtain actual output of robot.

Calculate output motion error and set the error as the next desired displacement of robot.

Iterative calculation to make the output error converged

(3)Calculate desired position of representative points

Note: Each module cannot generate precise motion because it has only 1 DOF.

 $oldsymbol{0}$

 $oldsymbol{0}$

(5)Forward kinematics calculation based on inverse kinematics of modules

Note: Output errors occur.

(6)Set output errors as new desired positions of output points

 \bigcirc

 \bigcirc

 \bigcirc

 \bigcirc

(7)Repeat the inverse kinematics of modules and forward kinematics of the robot until the output errors are converged.

(8)Output points will reach their desired position.

Calculation of desired displacement of representative point

Example of inverse kinematics of robot

Convergence process

Positioning error was converged with several iterations.

1.7 Experiments of motion control

Prototype

Linear potentiometer

Photograph of a prototype

Results of CP control

By utilizing representative points on modules, CP control of network-structure robot was achieved.

2. Motion control of overactuator mechanisms with elastic elements

2.1 Issues to be solved in overactuator mechanism

(1)Cooperative control of overactuators to avoid the interference is not easy because of servo error.(2)Flexibility should be installed.

By adding elastic elements to relax the interference between overactuators, flexible motion control can be achieved.

2.2 Planar network structure robot with elastic elements Proposal : Relaxation of the interference by adding elastic elements

Module: minimum unit of Network

Number of actuator > DOF

2.3 Forward kinematics

Output Degrees-of-Freedom

Configuration of the robot can be determined with <u>distance be</u>tween revolute joints of lineractuator unit.

Output DOF

DOF in case additional coil springs are ignored.

Ex. Linearactuator unit

Elastic actuator units have one more DOF because of coil spring.

When coil spring is ignored

Output DOF of elastic actuator unit becomes zero.

Configuration-Determining Parameter

Output DOF of actuator unit = 0 \implies Actuator units don't affect the output DOF of mechanism.

The configuration of mechanism can be represented by the chains.

Configuration determining parameter(C.D.P.) Necessary and sufficient parameter(s) to represent positions and postures of all links.

disconnected with frame

Positions of all joint in mechanism can be calculated as a function of C.D.P. $\Phi = \{\phi_1, \dots, \phi_c\}$.

Elastic Input/output Equation

 $f_{\mathrm{A},5}$

Force balance equations can be summarized as

Then, set imaginary forces as zero

 $[A(\boldsymbol{\Phi})] \cdot \boldsymbol{\theta} + [B(\boldsymbol{\Phi})] = \boldsymbol{\theta}$

This equation is called as '*Elastic Input/Output Equation*'.

By solving elastic input/output equation for C.D.P. with Newton-Raphson method, forward kinematics can be achieved.

Example of analysis

A planar network-structure robot with 4 D.O.F and 5 elastic actuator units

with 4 D.O.F and 5 elastic actuator units

Input motions are given as 5th power dwelling function.

Because output displacement varied smoothly as input, it was confirmed that the proposed forward kinematics was correct and effective.

2.4 Inverse Kinematics

Iterative Calculation to Minimize Output Compliance

Redundant mechanism

Gradient Projection Method :

Forward kinematics: $\boldsymbol{r} = \boldsymbol{g}(\boldsymbol{\theta})$

General solution of inverse kinematics

$$\Delta \boldsymbol{\theta} = \boldsymbol{J}^{\#} \Delta \boldsymbol{r} - \left[\boldsymbol{I} - \boldsymbol{J}^{\#} \boldsymbol{J} \right] \cdot k \left(\frac{\partial \boldsymbol{\Phi}}{\partial x} \right)$$

Solution for minimum norm of input increment

$$\boldsymbol{J}^{\#} = \boldsymbol{J}^{\mathrm{T}} \cdot \left(\boldsymbol{J} \cdot \boldsymbol{J}^{\mathrm{T}} \right)^{-1}$$

Pseudo inverse of Jacobian matrix

Objective function : Compliance of output link "To keep output stiffness"

By adding external forces in the force balance equations

To obtain an optimum solution based on a

 $f_{J} + f_{I} + f_{A} + f_{e} = \theta$ Forward kinematics $r = g(\theta, f_{e})$ &
Differential approximation
Compliance matrix of output link :

$$\begin{bmatrix} \mathbf{C}(\boldsymbol{\theta}) \end{bmatrix} = \begin{bmatrix} \frac{\Delta g_1}{\Delta f_{e,x}} & \frac{\Delta g_1}{\Delta f_{e,y}} & \frac{\Delta g_1}{\Delta \tau_e} \\ \frac{\Delta g_2}{\Delta f_{e,x}} & \frac{\Delta g_2}{\Delta f_{e,y}} & \frac{\Delta g_2}{\Delta \tau_e} \\ \frac{\Delta g_3}{\Delta f_{e,x}} & \frac{\Delta g_3}{\Delta f_{e,y}} & \frac{\Delta g_3}{\Delta \tau_e} \end{bmatrix}$$

Flowchart of inverse kinematics

Example of inverse kinematics

2.5 Motion Control Experiment

CP control based on the proposed inverse kinematics

3. Position and stiffness control of elastic parallel manipulators with redundancy

3. 1 Elastic parallel manipulators with redundancy

Planar redundant mechanism which can control translational displacement, X_P , Y_P , and stiffness, K_x , K_y , of an output link

3. 2 Kineto-statics analysis

Basic kinematics

Force balance equation

Force and torque balance equation at output link: f_3 f_e f_2 $\begin{cases} \sum_{i=1}^{3} f_i + f_e = 0 \\ \sum_{i=1}^{3} (J_{i+3} - P) \times f_i + \tau_e = 0 \end{cases}$

Force and torque balance equation at output link: $f_2 = f_e = \int_2^{\infty} f_2$

$$\begin{cases} \sum_{i=1}^{3} \boldsymbol{f}_{i} + \boldsymbol{f}_{e} = \boldsymbol{\theta} \\ \sum_{i=1}^{3} (\boldsymbol{J}_{i+3} - \boldsymbol{P}) \times \boldsymbol{f}_{i} + \boldsymbol{\tau}_{e} = 0 \end{cases}$$

1

By giving $\theta_1, \theta_2, \phi_1, \phi_2, \phi_3$ and setting $f_e = \theta, \tau_e = 0$ x_p, y_p, α can be calculated with Newton-Raphson Method

can be calculated.

3.3 Inverse analysis

Condition on output stiffness

At first $\alpha, \theta_1, \theta_2$ are determined to give the desired output stiffness. Linear approximation of the relation:

$$\begin{bmatrix} \Delta K_x \\ \Delta K_y \end{bmatrix} = \mathbf{C} \begin{bmatrix} \Delta \theta_1 \\ \Delta \theta_2 \\ \Delta \alpha \end{bmatrix}, \Box \mathbf{C} = \begin{bmatrix} \frac{\partial K_x}{\partial \theta_1} & \frac{\partial K_x}{\partial \theta_2} & \frac{\partial K_x}{\partial \alpha} \\ \frac{\partial K_y}{\partial \theta_1} & \frac{\partial K_y}{\partial \theta_2} & \frac{\partial K_y}{\partial \alpha} \end{bmatrix}$$

Solution by gradient projection method:

Redundant

$$\begin{bmatrix} \Delta \theta_1 \\ \Delta \theta_2 \\ \Delta \alpha \end{bmatrix} = C^{\#} \begin{bmatrix} \Delta K_x \\ \Delta K_y \end{bmatrix} + (I - C^{\#}C)\varepsilon$$
$$C^{\#} = C^T (CC^T)^{-1} : \text{Pseudo in}$$
$$: \text{Derivative}$$

- : Pseudo inverse matrix
 - : Derivative of objective function

Examples of objective function:

linearactuators keep located

Condition on output displacement

Then linear actuator inputs, ϕ_i , are calculated by solving force balance equation with Newton-Raphson method.

Inverse kineto-static analysis can be achieved.

3.4 Simulations of position and stiffness control

Circular displacement of 25mm in radius while keeping stiffness as $K_x = 1.2[\text{N/mm}], K_y = 2.1[\text{N/mm}]$

Continuous desired displacement and stiffness were obtained with the proposed objective function.

3.5 Experiments on position/stiffness control

A prototype with 5DOF

(1)Constant stiffness on the circular trajectory Position 2

(1)Constant stiffness on the circular trajectory

Position 3

2D Stiffness is measured with a force sensor and a micrometer head

Position 4

n 1

(2)Change of stiffness at the same output displacement $x_{P,d} = -20[\text{mm}], y_{P,d} = 350[\text{mm}]$

 $K_x = 1.6, K_v = 0.8$

 $K_x = 1.2, K_v = 1.2$

The manipulator change its configuration to control stiffness vector. $K_{\rm r} = 0.4, K_{\rm v} = 2.0$

$$K_x = 0.8, K_y = 1.6$$

4. Concluding remarks

Syntheses and Forward/inverse kinematics analysis of overactuator mechanisms were carried out.
(1)Network structure robots composed of network modules are proposed and synthesized.
(2)Iterative calculation based on representative points can achieve inverse kinematics and motion control of the network structure robots.

Motion control of redundant overactuator mechanisms with elastic elements was also realized.

- (3) Interference between overactuators can be relaxed with elastic elements on actuators.
- (4)Optimum motion control of network structure robot with elastic elements was achieved.

(5)Position and stiffness control of a redundant elastic robot was achieved.

Homework 5

Derive the output motion ϕ with respect to inputs θ_1 and θ_2 of the following overactuator mechanism with two springs with stiffness k and natural length l.

The result will be summarized in A4 size PDF with less than 4 pages and sent to Prof. Iwatsuki via T2SCHOLAR by May 18, 2023.