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1.1 Overactuator mechanisms with redundancy
There is a possibility to obtain overactuator
mechanisms when we design hyper redundant 
multi-loop mechanisms.

1. Motion Control of overactuator mechanisms 
with redundancy 

M M

M

A simple example of overactuator mechanism

2)13(5)15(3 =−−−=F
Degrees-of-Freedom of mechanism:

Number of Actuators:
3=AN



1.1 Overactuator mechanisms with redundancy
There is a possibility to obtain overactuator
mechanisms when we design hyper redundant 
multi-loop mechanisms.
(1)Cooperation of small actuators to generate 

high power
(2) The robot can move while some actuators 

are broken down.

How to design and control the overactuator
mechanisms especially taking account of interfere 
between actuators

1. Motion Control of overactuator mechanisms 
with redundancy 



１.2 Proposal of network-structure robot
Planar network structure robot:
Large scale robot which is 
composed of linearactuator 
units connecting with each other

Planar network structure robot

Links 

Linearactuator units:
two revolute pairs
mounted at both ends
of a linearactuator

Possibility to control
outline of the mechanism
by specifying multiple 
output points 



Planar network-structure robot composed of modules

Proposal: Network-structure module
as a minimum unit of network structure robot

(1)A planar link chain composed of linear actuators and  
links with multiplerevolute joints

(2)Connected with a frame or other modules with  
connective joints

(3)A mechanism obtained by connecting all connective 
joints of the module with frame  has more actuators 
than DOF.

(4)Not include other modules in itself

Definition of network structure module



Examples of link chains synthesized as candidates of modules 

Examples of modules 

X

X

Result of number 
synthesis of network
structure module



Examples of synthesized planar network structure modules

1DOF/1Act.

1DOF/2Act.
Overactuator

4DOF/4Act.



Fixed joints

1.3 Synthesis of large scale network structure robot
by connecting modules

Connection of network structure modules

Modules are sequentially
connected with each other.



Synthesized network structure robot with 12 DOF 13 actuators 



1.4 Forward kinematics  of network-structure robot
Forward kinematics of network-structure modules
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Module B 

(b)Module B 
Overactuator module 

As same as module A

To be determined dependently 
to another actuator input



(c)Module C
New variable ψ：
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Forward kinematics of module A:
J1J2A2J5，J5J4A4J3

Calculation of position of J3

Solve the nonlinear equation and 
obtain ψ

Calculate all joint positions using ψ
Module C 



Forward kinematics of robot

The planar network-structure robot with 12 DOF and 13 actuators

Output point

Can be calculated with sequential calculation 
of forward kinematics of modules 



One example of forward kinematics of robot

Smooth motion of output point

Dwelling 5th power function



1.5 Inverse kinematics using representative points
on module

Inverse kinematics of module
Desired displacement of module to generate desired 
position of output point

Describe the displacement of module 
with motion of one or a few representative points

on the module

For Less DOF : The nearest motion for the desired 
displacement 

For more DOF : Increase representative points



Representative point

Desired displacement 
for representative point

(1) Module A and B
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Solution as the nearest displacement:



(2)Module C “4 DOF  → 2  Representative points”
2*2* )()( kJkkJkk yyxx −+−=θ
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1.6  Inverse kinematics of robot using representative 
points on modules

Inverse kinematics of Robot
Inverse kinematics calculation of modules for given 
desired displacement of representative points on modules

It is difficult to obtain precise desired output motion 
of  robot.

Forward kinematics calculation of robot to obtain actual
output of robot.

Calculate output motion error and set the error as the 
next desired displacement of robot.

Iterative calculation to make the output error converged



Module 

Representative 
points 

Output
point (1)Set representative points

on module  

(2)Designate the desired position 
of output point 



(3)Calculate desired position of
representative points 

(4)Inverse kinematics calculation
of each module for the 
representative point 

Note: Each module cannot generate
precise motion because it has
only 1 DOF.



(5)Forward kinematics calculation 
based on inverse kinematics of
modules

Note:  Output errors occur. 

(6)Set output errors as new desired
positions of output points



(7)Repeat the inverse kinematics of
modules and forward kinematics 
of the robot until the output errors
are converged.

(8)Output points will reach their 
desired position.



Calculation of desired displacement of representative point

Direction:    
As same as the 
desired displacement
of the output point

Amplitude:
In proportion to
the distance  from
origin
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Example of inverse kinematics of robot

Convergence process

Initial position

Desired position

Positioning error was converged
with several iterations.
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CP control

(a)Desired trajectory

Without actuator limit With actuator limit

“Ellipsoidal trajectory”

Actuator inputs are fixed at the limit values
if the solution of inverse kinematics excess
the limit value.

(b)Results of inverse kinematics (Actuator inputs)

It is possible to continuously analyze the inverse
kinematics by  taking account of actuator limit.



1.7 Experiments of motion control
Prototype

Photograph of a prototype

Linear potentiometer

Linear actuator
25W，305<θ<440 mm

Multi-jointed link
made of aluminum

Fixed joint
(Magnet base)



(1)Straight line trajectory (2)Ellipsoidal trajectory

Results of CP control

By utilizing representative points on modules,
CP control of network-structure robot was achieved.



2. Motion control of overactuator
mechanisms with elastic elements

2.1 Issues to be solved in overactuator mechanism 

(1)Cooperative control of overactuators to avoid 
the interference is not easy because of servo error.

(2)Flexibility should be installed. 

By adding elastic elements to relax the interference 
between overactuators, flexible motion control can 
be achieved.



2.2 Planar network structure robot 
with elastic elements

Proposal : Relaxation of the interference 
by adding elastic elements 

To analyze a motion

Not only kinematic relations, but also force 
balance should be taken into account.

Overactuator mechanism

φ1
θ2

θ1ξ1
η1

J1 J2
J3

J4J5

Both actuators should be 
driven cooperatively.

Overactuator mechanism 
with elastic element

θ2

δ1δ2

θ1
φ1

ξ1
η1

J3 J2J1

J4J5

Each actuator can be driven 
independently.

Adding

elastic elements



A coil spring is added 
serially to each actuator

Number of actuator > DOF

Synthesized by
connecting modules

Module: minimum unit of Network



2.3 Forward kinematics
Output Degrees-of-Freedom

Configuration of the robot can be determined with 
distance between revolute joints of lineractuator unit.

Output DOF 

DOF in case additional coil springs are ignored.

θ θδ

F = 3×2 – 2×3 = 0 F = 3×3 – 2×4 =  1

Simple actuator unit Elastic actuator unit

<

Elastic actuator units have one more DOF because of coil spring.

Ex. Linearactuator unit

Output DOF of elastic actuator unit becomes  zero.
When coil spring is ignored



Configuration-Determining Parameter
Output DOF of actuator unit = 0

ξ1η1

2ξ
η2

ξ5

ξ4
ξ3

η5

η4

η3

φ1

φ2

φ5

φ4
φ3

E(   ,   ,   )Ex Ey ψE

Network-structure robot 
with elastic elements 

ξ1η1

2ξ
η2

ξ5

ξ4
ξ3

η5

η4

η3

φ1

φ2

φ5

φ4
φ3

E(   ,   ,   )Ex Ey ψE

Kinematic chains 
obtained from robot

Output DOF mechanism DOF of kinematic chains

Actuator units don’t affect the output DOF of mechanism.

Configuration determining parameter(C.D.P.)
Necessary and sufficient parameter(s) to 
represent positions and postures of all links.

The configuration of mechanism 
can be represented by the chains.

Remove

actuator units



The kinematic chains can be classified to 4 cases.
In each case configuration-determining parameters can be set.

The number of C.D.P. should 
be equal to DOF.

Positions of all joint in mechanism can be calculated as a 
function of C.D.P. Φ = {φ1,･･･, φc}.

(b) Open loop chain 
disconnected with frame

(c) Closed-loop chain 
connected with frame

(d) Closed-loop Chain 
disconnected with frame

Φ={ψ1,・・・ ,ψF
}

ψF

ψ
1

ψ2

(a) Open chain 
connected with frame

N
1

N
n

N2

ψ1

ψ2
ψ3

ψn

Φ={ψ1,・・・ ,ψｎ}

Φ={x1,y1 ,ψ1,・・・ ,ψF-2}

ψ2

ψ
1

ψF
-2

J1(x1,y1
)

x

y

ψi

φ ={x1,y1 ,ψ1,・・・ ,ψｎ}

N1

Nn

N2

ψ1

ψ2
ψ3

ψn

J1(x1,y1)x

y

Posture angle of 
each link

Position vector of 
arbitrary link

2)1(23 +=−−= nnnF



J1 J2

J3

J4
J5

J6 J7

J8

J9

J10

J11

x

y

ξ1

η1

η２

ξ２

fA,1
fA,2

fA,3

fA,4

fA,5

τI,1

τI,2

fI,1

fJ,8

-fJ,8

fJ,8 +fI,1 +      fA,1+      fA,2 =0
-fJ,8 +      fA,3+       fA,4+       fA,5=0

J8×fJ,8 +     +τI,1 +J6×fA,1+J7×fA,2 =0
-J8×fJ,8 +           +τI,2 +J9×fA,3+J10×fA,4+J11×fA,5=0

A system of force balance equations

( ) ( ) ( ) ( )[ ] iiinmiiiA Lk aJJf ⋅−−−= θθ ΦΦΦ,,

Joint positions are given as functions of Φ.

Spring force can be calculated as

Imaginary forces, fI, and moments, τI
are assumed on  C.D.P. to balance.

Joint forces, fJ, are set on revolute joints
between compound links.

Unknown variables

Elastic Input/output Equation



By  solving elastic input/output equation for C.D.P. with 
Newton-Raphson method, forward kinematics can be achieved.

Thus Imaginary force FI = ( fI ,τI )T is derived as
( ) ( )[ ] ( ){ }ΦBθΦΑΦθF +⋅=,I

Then, set imaginary forces as zero

( )[ ] ( )[ ] 0ΦBθΦΑ =+⋅
This equation is called as ‘Elastic Input/Output Equation’.

Force balance equations can be summarized as
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These equations can be analytically solved.



Example of analysis

A planar network-structure robot
with 4 D.O.F and 5 elastic actuator units

x
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Output
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J９

J１１

J１３

J５

x

y

O

Φ = {x5,y5, ψ1, ψ2 }
C.D.P

ψ2
ψ1 

（x5 , y5）

A planar network-structure robot
with 4 D.O.F and 5 elastic actuator units
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it was confirmed that the proposed forward kinematics 
was correct and effective.

Because output displacement varied smoothly as input,
Input motions are given as 5th power dwelling function.

Example of analysis



2.4 Inverse Kinematics
Iterative Calculation to Minimize Output Compliance

Redundant mechanism To obtain an optimum solution based on a 
criterion
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Forward kinematics:
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By adding external forces in the 
force balance equations
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Solution for 
minimum norm of 
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Objective function : 

Compliance matrix of output link :

of inverse kinematics

Pseudo inverse of 
Jacobian matrix

Compliance of output link

Forward kinematics
&

Differential approximation

“To keep output stiffness”



Flowchart of inverse kinematics

To evaluate compliance 
in all direction (x,y,φ)

Determinant of compliance matrix
Give desired configuration rD

Give current configuration and inputs θ

Differential approximation by direct kinematics
( )[ ] ( )[ ]θCθJ ,

( ) [ ]
＊

D k
θθθ θ

C
JJIrrJθ

∆+= ∆

∆
×−−−=∆ ++ det

Calculate input modification

Direct kinematics ( )= θgr

?0≈−= D rrε
Output error :

Yes

No

END

START

r = r

＊ ＊

＊

＊

θ θ= ＊

r＊r =

r ,

*

*

Iterative calculation till output 
error decreases adequately 

Solution of inverse kinematics 
with the minimum objective 
function can be obtained.

##

forward kinematics

Forward kinematics
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Example of inverse kinematics

5th power dwelling function.

The robot can achieve the specified trajectory 
while output compliance is improved.
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2.5 Motion Control Experiment

1.3[m]

A prototype of planar network-structure 
robot with 4 DOF and 5 actuators

Linearactuators are 
driven with PWM control.Rotary encoder

Output point

Translation in X-direction

Linearspring unit

CP control based on the proposed inverse kinematics

It was confirmed that the 
proposed inverse kinematics 
was effective and useful.

The output link could be driven along 
the desired trajectory.



3. Position and stiffness control of elastic parallel   
manipulators with redundancy

Planar redundant mechanism which can control translational 
displacement,             , and stiffness,                , of an output linkPP yx ,

yx KK ,

Redundant mechanism 
with 4 outputs and 5 actuators

3 elastic elements for 2D-stiffness
to utilize nonlinearity

Elastic linearactuators are 
connected with moving links
to magnify workspace Elastic 

linearactuators

Rotary actuators

Output link

A planar parallel manipulator 
with 5DOF of 2 rotary actuators
and 3 elastic linearactuators

Displacement
Stiffness

3. 1 Elastic parallel manipulators with redundancy



Basic kinematics
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By using rotary actuator inputs and 
position and posture of output link, 
joint positions are calculated as 

Directional vectors of elastic 
linearactuators are calculated as

3. 2 Kineto-statics analysis



Force balance equation

Elastic linearactuator:
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Force and torque balance equation at output link:

Unit directional vector 
of elastic linearactuator

Configuration determining parameter
),,,,( 21 θθαpp yxΨ

Spring coefficient Deformation of spring



Elastic linearactuator:
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Force and torque balance equation at output link:

Unit directional vector 
of elastic linearactuator

Configuration determining parameter
),,,,( 21 θθαpp yxΨ

Spring coefficient Deformation of spring

By giving 32121 ,,,, φφφθθ
and setting 0, == ee τ0f

α,, pp yx can be calculated with 
Newton-Raphson Method 



Output stiffness
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can be calculated.



3.3 Inverse analysis
Condition on output stiffness
At first                   are determined to give the desired output stiffness.21,, θθα
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Solution by gradient projection method:
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: Pseudo inverse matrix

Redundant

: Derivative of objective function



Examples of objective function:
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ε linearactuators keep located 
around its neutral position

Condition on output displacement
Then linearactuator inputs, φi , are calculated by solving 
force balance equation with Newton-Raphson method.

Inverse kineto-static analysis can be achieved.
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3.4 Simulations of position and stiffness control
Circular displacement of 25mm in radius while keeping stiffness as

]N/mm[1.2],N/mm[2.1 == yx KK
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連続な解

Output values Actuator inputs

Output displacement

Output stiffness

Linearactuator inputs         

Rotary actuator inputs         

Continuous desired displacement and stiffness were 
obtained with the proposed objective function.



3.5 Experiments on position/stiffness control

A prototype with 5DOF

An elastic linearactuator

DC motor
Ball screw

Coil spring

90
0m

m



Rotary encoders
to measure joint 
angles

Linearpotentiometers
to measure spring 
deformation

Calculate position 
and posture of 
output link



Position 1

Position 2

Position 3

Position 4

(1)Constant stiffness on the circular trajectory



Position 1

Position 2

Position 3

Position 4

(1)Constant stiffness on the circular trajectory

2D Stiffness  is measured with a 
force sensor and a micrometer head



Deformation of output point [mm]
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Desired stiffness is almost generated. 



6.1,8.0 == yx KK

8.0,6.1 == yx KK 2.1,2.1 == yx KK

0.2,4.0 == yx KK

]mm[350],mm[20 ,, =−= dPdP yx
(2)Change of stiffness at the same output displacement

The manipulator change its configuration
to control stiffness vector.



Displacement of output point [mm]
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Manipulator can control  stiffness 
at the same output position.



4. Concluding remarks
Syntheses and Forward/inverse kinematics analysis of 

overactuator mechanisms were carried out.
(1)Network structure robots composed of network 

modules are proposed and synthesized.
(2)Iterative calculation based on representative points 

can achieve inverse kinematics and motion control of
the network structure robots.

Motion control of redundant overactuator mechanisms
with elastic elements was also realized.
(3) Interference between overactuators can be relaxed

with elastic elements on actuators.
(4)Optimum motion control of network structure robot

with elastic elements was achieved.
(5)Position and stiffness control of a redundant elastic 

robot was achieved.



Homework 5
Derive the output motion φ with respect to inputs
θ1 and θ2 of the following overactuator mechanism 
with two springs with stiffness k and natural length
l.

The result will be summarized in A4 size PDF
with less than 4 pages and sent to Prof. Iwatsuki
via T2SCHOLAR  by May 18, 2023.
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